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Abstract: Artificial neural networks have become a staple computing technique in many fields.
Yet, they present fundamental differences with classical computing hardware in the way they
process information. Photonic implementations of neural network architectures potentially
offer fundamental advantages over their electronic counterparts in terms of speed, processing
parallelism, scalability and energy efficiency. Scalable and high performance photonic neural
networks (PNNs) have been demonstrated, yet they remain scarce. In this work, we study
the performance of such a scalable, fully parallel and autonomous PNN based on large area
vertical-cavity surface-emitting lasers (LA-VCSEL). We show how the performance varies
with different physical parameters, namely, injection wavelength, injection power, and bias
current. Furthermore, we link these physical parameters to the general computational measures
of consistency and dimensionality. We present a general method of gauging dimensionality in
high dimensional nonlinear systems subject to noise, which could be applied to many systems
in the context of neuromorphic computing. Our work will inform future implementations of
spatially multiplexed VCSEL PNNs.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Artificial neural networks (ANNs) have become a ubiquitous computing technique. Indeed, due
to their flexibility and high performance, they have revolutionized many fields ranging from
natural language processing and object recognition [1] to self driving vehicles [2]. ANNs are
fundamentally different from classical computers, in that they process information in a fully
parallel manner. Thus, there has been growing interest in developing fully parallel hardware to
enable efficient implementations [3,4]. Among these, photonics has been heralded as a promising
platform in terms of scalability [5-7], speed [8,9], energy efficiency [10] and parallel information
processing [9].

Reservoir computing (RC) [11,12] is a simple, efficient and yet high performance ANN
concept where only the output weights are trained. Thus, RC can be implemented to leverage
the computational power of many existing physical systems [13], which makes it a relevant
benchmark architecture that can be used to consistently gauge hardware performance. Ultimately,
for photonic neural networks (PNNSs) to be truly competitive, they require high performance,
efficiency, speed and scalability. Moreover, in situ training techniques should be implemented to
avoid speed bottlenecks and to reduce the reliance on an auxiliary high performance computer [ 14].
Semiconductor lasers have emerged as major candidates to implement PNNs due to their ultrafast
modulation rates and complex dynamics [9]. Among these, vertical-cavity surface-emitting laser
(VCSELs) are of particular interest because of their efficiency, speed, intrinsic non linearity and
the maturity of their CMOS-compatible fabrication process [15,16]. In [17], RC is implemented
via the spatial multiplexing of modes on the surface of a large area VCSEL (LA-VCSEL). This
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new approach allows for a truly parallel and autonomous network where the role of the external
computer is greatly minimized via the use of hardware learning rules. This implementation
differs from the popular so-called time-multiplexed approach [18,19], where information is still
processed sequentially rather than in a parallel way and a heavy involvement of an external
computer is the usual technique to interface and to create the reservoir state.

For the use of LA-VCSELs in PNNs, efforts must be expended in characterising these devices
and their performance dependence on key physical parameters. Our investigation links these
physical parameters to generic computational metrics, namely consistency and dimensionality. We
find that injection locking conditions yield the best performance for our benchmark classification
task (3-bit header recognition), reaching a 1.5% error rate. In addition, biasing the LA-VCSEL
at higher currents improved performance due to a stronger non-linear response of our device.
Consistency was measured to be above 99% highlighting the robustness of our system. Lastly,
the dimensionality of our device was measured under several conditions and we find a correlation
between higher dimensionality and better performance.

2. Working principle

The PNN implemented here is similar to the one presented in [17]. Like a conventional RC,
it is divided into three sections: an input layer; a reservoir; and an output layer. The working
principle of our system is shown in Fig. 1(a).
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Fig. 1. (a) Working principle of the LA-VCSEL spatially multiplexed reservoir. (b) Input
information u and the subsequent LA-VCSEL response x for 3-bit binary headers. The graph
shows the target output y'3€ (yellow) for classifying header 001 and different reservoir
outputs y°U of decreasing mean square error (MSE) (red, blue and green). (c) Schematic
illustration of the error landscape, showing the MSE as a function of the output weights
configuration. The outlined (red, blue and green) Boolean matrices correspond to the output
weights giving the output from (b). (d) Representative performance of the PNN on a 6-bit
header recognition task.

The input layer is built using an continuously tunable external cavity laser (ECL, Toptica CTL
950), a digital micro-mirror device (DMD,Vialux XGA 0.7" V4100) and a multimode fibre
(MMF, Thorlabs M421.01). The ECL beam is colimated and illuminates DMD,. The mirrors on
a DMD can flip between two positions, which allows us to display Boolean images that constitute
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our input information u (blue parts are on, white parts are off). Each image is displayed on DMD,
for 200 us resulting in an injection frame rate of 5 kHz, which is orders of magnitude slower
than the intrinsic time scales of the VCSEL (~ ns), meaning that we use the device in its steady
state. The spatially encoded input information is then sent through a MMF of 50 um in diameter,
which passively implements our input weights W' via the MMF’s complex transmission matrix.
In practise, this is done by imaging the spatial pattern on DMD, through the MMF. The input
information consists of sequences of binary pie-shaped headers that are split into several parts
according to the number of bits of information that is displayed, Fig. 1(a) shows a 3-bit header.
Moreover, the input patterns exhibit an outer ring that is constantly in the "ON" state. The ring
injects a DC-locking signal that is used to injection-lock the device to ensure its stability. The
ring’s thickness is the difference between the inner radius and the outer radius, which is set by
the size of the colimated injection beam on DMD,. The larger the ring, the higher is the power
continuously injected to lock the LA-VCSEL - and the lower is the power used to encode the input
information. The general injection locking aspect is explained in more detail in Section 3.1.2.

The nearfield output of the MMF, W™u is optically injected into the LA-VCSEL. This can be
realized by imaging the MMF output facet’s nearfield on the surface of the device, and here we
use a LA-VCSEL with an aperture of ~ 50 ym and a threshold current I, = 20 mA. We use a PID
controller to stabilize the VCSEL’s operating temperature to ~ 28 °C with variations on the order
of 10 mK. Our device was fabricated in a university grade clean-room following a process which
has been optimized for high bandwidth and energy efficiency [20,21]. The VCSEL structure
is the same as the one used in [17]. It is grown epitaxially and comprises a half-wavelength
(1/2) cavity and two distributed Bragg reflectors (DBRs). The cavity hosts 5 InGaAs quantum
wells, and top and bottom DBRs are respectively made of periodically alternating Al,Gaj_,As
layers. The top DBR is a 14.5 period p-doped structure with x = 0.1 and x = 0.92, while the
bottom DBR is an n-doped 37-periodic structure alternating between x = 0.05 and x = 0.92.
Finally, the circular aperture of the VCSEL was defined through oxidization of an Al-rich central
layer with an oxidization length of ~ 9 um. In this setup, the components of the reservoir, that
is to say non-linear nodes and the connections between them, are fully implemented by the
physical properties and dynamics of the LA-VCSEL. Nodes are spatial positions on its surface,
and the coupling between these neurons is taken care of via intrinsic physical processes. Namely,
carrier diffusion in the semiconductor medium creates a Gaussian-like local coupling, while
diffraction of the optical field inside the laser cavity creates a complex global coupling. The
LA-VCSEL takes the input information and transforms it in a complex non-linear way according
to the dynamics of optical injection. This process produces the reservoir state x, shown in
Fig. 1(a) and Fig. 1(b). Moreover, in Fig. 1(b), we can see how the reservoir responds to different
input information (different 3-bit headers). Each response is complex, non-linear, and encodes
significantly modified responses for the different input information. These differences explain, in
a simple way, why the system is able to learn, i.e. why it is possible to find a configuration of
output weights that solve a certain task such as pattern classification.

The final component of our PNN is its programmable output layer in order to physically
implement morphism and learning. The VCSEL’s near field is imaged onto a second DMD
(DMDy,), whose surface is in turn imaged onto a large area photo-detector (DET, Thorlabs
PM100A, S150C). We rely on DMDj, to implement our output weights W, The VCSEL itself
is a spatially continuous medium, whereas the DMD is a discrete matrix of pixels. Therefore, by
imaging onto DMDy, we sample the VCSEL’s surface with the pixels of the DMD, and setting
the magnification allows us to tune the sampling rate (number of neurons). Here, we implement
around n = 350 fully parallel neurons. The mirrors on a DMD can flip between two positions,
one of which diverts the corresponding optical signal towards the DET, i.e., giving us Boolean
readout weights. By choosing the right configuration of output mirrors, we can tune the spatial
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positions of the LA-VCSEL that contribute to the optical power detected at the DET and therefore
train the output y of the reservoir.

When training the network, a random matrix of output weights is loaded onto DMDy,. The
output y is recorded for a sequence of 7" images (training sequence) as shown in Fig. 1(b) and
Fig. 1(c)- T is therefore the batch size. The target output y*™ is known for every input pattern
belonging to the training set. After each learning epoch &, (a run through all the input images), y
is recorded and a normalized mean square error (NMSE) is calculated:

1 T
&= 7 ) 0 -y =) (1)
=1

Training is realised via a simple, yet effective evolutionary algorithm presented in [22,23]. A
single or numerous mirrors located at randomly chosen positions are flipped at the transition
between epochs k and k + 1. If the change results in a lower error, i.e. €41<€, it is kept,
otherwise the output weights are reset to the configuration at epoch k as shown in Fig. 1(b) and
Fig. 1(c). Finally, Fig. 1(d) shows a representative learning curve for a 6-bit header recognition
task, demonstrating that our PNN can also be applied to significantly more challenging tasks. In
this task, the VCSEL has to differentiate between 2° = 64 classes. After learning, which takes
around a minute for each class, the system reaches a symbol error rate (SER) of around 1.5%
averaged across all 64 classes.

As a consequence of being implemented fully in hardware, our system is subject to drifts. Yet,
by using standard PID temperature stabilization and mechanically fixating the injection MMF,
drift is reduced significantly, making the system more robust. Once the system has converged
during learning, the corresponding task performance remains stable on the scale of several
minutes, and only degrades smoothly, without erratic drops in performance. Continuous, online
learning will therefore be able to compensate for these slow drifts.

3. Computing performance analysis

In order to evaluate the impact of several parameters on learning we use a 3-bit header recognition
task (illustrated in Fig. 1(b)) as our benchmark for convenience and speed. The goal in this task
is to recognize every input pattern individually among the 23 = 8 images. Our computational
performance metric will be the NMSE error and the SER. The relevant parameters studied in
this work are the injection wavelength Ajy;, the injection power ratio PR, the LA-VCSEL’s bias
current Iy, and the fraction of the injection power assigned to the DC locking ring.

3.1.  Physical parameters
3.1.1. Injection wavelength and power

First we show how the injection locking conditions impact our system. For reference, the
VCSEL’s output power was 3.6 mW when biased 50% above threshold, Iyas = 1.5y, with
I, = 20 mA. Figure 2(a) shows how the LA-VCSEL’s free running modes react to an external
drive laser. We scan the injection wavelength continuously until a resonance condition is met at
Ainj = 918.9 nm. At this wavelength, the VCSEL’s free running modes are suppressed by roughly
10 dB and its emission wavelength is shifted to that of the injection laser. This phenomenon
is called injection locking. The mechanisms of optical injection for multimode LA-VCSELs
have been extensively studied in [24,25]. Here, we study the impact of injection locking on
computational performance.

Figure 2(b) highlights the importance of the injection wavelength. We see a clear and
consistent best performance basin around the resonance wavelength (NMSE = 0.2). Besides the
spectral resonance, we also find that the performance degrades with a lower injection power ratio
(PR = Piyj/PvcseL), a trend which is confirmed by Fig. 2(c). There, we see that the performance
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Fig. 2. (a) Injection locking of the VCSEL by an external drive laser (power ratio, PR = 0.8),
the red dotted line shows the resonance at Ajpj = 918.9 nm and the white dotted circle shows
the locking range. (b) Performance (NMSE) vs injection wavelength for different injection
power ratios (PR), highlighting that the best performance is reached for the injection locking
conditions. (c) NMSE (left axis) and SER (right axis) as a function of PR (taken at the
optimal wavelength detuning condition, 4 = 918.9 nm). For all measurements, the bias
current was 50% above threshold, at this current the VCSEL emits ~ 3.6 mW of optical
power.

increases until PR ~ 1 where it saturates and then starts to degrade again for higher PRs. The
best performance is reached when the device is fully injection locked, yet apparently before overly
intense input has quenched its nonlinearity. In an intuitive sense, for classification tasks, we want
the LA-VCSEL’s response to be sensitive to changes in the input information yet still produce
reliable results, and these conditions are met under injection locking. Our results are in line with
the ones presented in [26,27] for an edge-emitting laser and a VCSEL-based time delay reservoir
respectively.

3.1.2. Bias current and DC-locking signal strength

The next physical parameter that is relevant for our system is the bias current Ipi,s. It controls the
response of the device by acting on the carrier-concentration distribution in the semiconductor
medium, which can impact the non-linearity of the device and the modal configuration of its
free-running emission. Thus, we measured the performance of our PNN for different bias currents
above threshold, with I, = 20 mA. In addition, for each bias current, we performed a scan of
the outer ring thickness, and hence for different ratios between the DC injection power and the
optical power used to encode the input information.

Figure 3(a) shows how the performance varies as a function of the DC-locking area for different
bias currents. Generally, the best performance is achieved when the DC-locking area is between
30% and 70% of the total input area. For the highest bias current, Iy, = 1.51y, we see that this
outer ring may not be needed, at least when we operate the LA-VCSEL PNN in its steady state as
done here.

Figure 3(b) shows that the best performance is reached for lyjas = 1.51, which is substantiated
by Fig. 3(c), where we recorded the response of the VCSEL to headers 001, 010 and 100 with a
camera. We then summed these responses and compared them to the real response of the VCSEL
to header 111. The difference shown in the third column cannot be solely attributed to a stronger
VCSEL nonlinear response. Indeed, optical detection, in the way we do it here, is itself nonlinear
because we measure optical intensities with a camera. Yet, this comparison provides a sense of
the total nonlinear spatial response of the system comprising the VCSEL and optical detection.
It shows a significantly greater difference for the two subtracted images at Ipj,s = 1.5y, than at
Lyias = 1.11, suggesting that the system’s response becomes more nonlinear and providing a
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Fig. 3. (a) NMSE as a function of the DC-locking area for different bias currents, Iy, = 20 mA.
At 0%, there is no DC-injection locking signal, while at close to 100% no information is
injected into the system. (b) NMSE as a function of the bias current averaged for DC-locking
areas between 30% and 70%. (c) Left: summed images of the VCSEL’s responses to the
input headers (001), (010) and (100). Middle: image of the VCSEL’s response to input
header (111). Right: absolute value of the difference between the left and middle images,
highlighting that the overall system’s response is more nonlinear at a higher bias current.

potential explanation for the gain in performance, going from an NMSE of 1 at 1.1/ to 0.2 at
1.51.

3.2. Computational metrics

In the previous section, we studied the impact of injection wavelength, power and bias current on
the computational performance of our PNN, using digital header recognition as a benchmark task.
Here, we will focus on computational metrics, namely dimensionality and consistency, and how
these vary with the physical parameters previously studied. These metrics are generic in nature,
and as such, can be measured for different hardware platforms, which consequently allows for an
essential hardware-agnostic comparison. In the case of dimensionality, we attempt to establish
a general way to gauge an analog hardware ANN’s dimensionality using principal component
analysis, which is non-trivial due to the presence of noise in such systems.

3.2.1. Consistency analysis

Consistency is defined as the ability of a system to respond in the same way when subjected to
the same input information [28,29]. Consistency is a fundamental property of dynamical systems
and is of high relevance when considering new devices or platforms for neuromorphic hardware
[26]. Indeed, a system that is not consistent would not be able to learn since its responses would
not be reproducible. In practice, the analysis is done by injecting the system with the same
input information several times, recording its response, and then computing the cross-correlation
matrix of these responses. Due to the symmetry of correlation matrices, the consistency is the
mean of the upper diagonal part of said matrix. As an input, we chose a random sequence of
binary headers comprising 1000 images.

In Fig. 4, we show how the total consistency Cioy (all mirrors on DMDy, are switched on
simultaneously) as well as the individual node-resolved consistency Cpoge (€very mirror is
switched on individually) vary as a function of the parameters studied in previous sections.
Figure 4(a) shows how the node-resolved consistency varies as a function of PR (left side) and
Lias (right side). First, the bias current is fixed at its optimal value obtained in Fig. 3(b), i.e
Ivias = 1.51, and the injection power is swept. Then, the injection power is fixed so as to
have the optimal power ratio obtained from Fig. 2(c), i.e PR ~ 1. The overall trend is that
the consistency of individual nodes increases when Pj,; and Iy, increase, going from a mean
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Fig. 4. (a) 2D distribution of the node-resolved consistency Cyqe for different injection
power ratios (left) and bias currents (right). For the left column Iyi,g = 1.5/, was constant,
for the left column PR ~ 1 was constant. (b) Total system consistency Cyyq as a function
of the injection wavelength for a constant PR ~ 1. (c) Total system consistency Cyoa1 as a

function of the injection power ratio for Ipjos = 1.51.

Figure 4(b) shows the overall system consistency and its dependence on the injection wavelength
Ainj. Overall, the total consistency Cioral remains above 99%. As a consequence, we cannot solely
attribute the drop in performance as a function of Aj,; seen in Fig. 2(b) to a consistency issue.
Generally, consistency is only one of many factors determining performance of a system for
a given task, and its interplay with other factors, such as dimensionality is highly non-trivial
and, importantly, it is task specific. However, consistency serves an upper bound of a system’s
performance. Indeed, if the consistency is 99% then one cannot perform classification with an
error below 1% in a continuous function approximation task. Finally, Fig. 4(c) shows how the
consistency varies as a function of the injection power ratio. We see that it saturates at a ratio
PR ~ 0.35, at this power level, the NMSE drops to ~ 0.5 from ~ 0.9 at PR ~ 0.1, as shown in

Fig. 2(c).

The main detrimental factor decreasing consistency in our system, and creating a substantial
difference between the node-resolved and global consistencies, is noise. Neglecting the noise of
the very stable injection laser, we are left with two noise sources. First, spontaneous emission
from the VCSEL acts as an uncorrelated noise source that is added to the response of individual
nodes without correlation. Second, the photodiode we use for detection presents different types
of noise, namely, thermal noise, shot noise, and dark current noise [30]. Yet, the photodiode
was rated to measure signals whose noise level is significantly smaller than 0.1 nW. The lowest
signal we send (dimmest individual node) is around 0.1 uW, and this difference of at least
three order of magnitude between detection noise level and signal means that the setup is not

detection noise limited. Regarding spontaneous emission noise, it is more prevalent when close

to the LA-VCSEL’s threshold, which explains the increase in node-resolved consistency seen in

Fig. 4(a) when increasing the bias current. Furthermore, increasing the injection power ratio

PR yields better locking conditions which stabilize the device and yield more reproducible

dynamical responses to input information, reducing the impact of spontaneous emission noise

and increasing the consistency as shown also in Fig. 4(a). Lastly, because spontaneous emission
is uncorrelated, it is efficiently averaged out when measuring the total consistency [31], which
explains the significant drop in relative noise amplitude for node-resolved and total consistency

measurements seen in Fig. 4.
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3.2.2. Dimensionality analysis

The last parameter we study is the dimensionality of our PNN. When selecting a potential hardware
candidate for implementing a PNN or an analog NN in general, a method to systematically
characterize its dimensionality is essential to provide system-independent comparability. Here,
we present a method to achieve such a goal. In this direction, previous work gauged the
dimensionality of dynamical systems in terms of computation based on an expansion of the
system’s responses in a space of orthogonal functions [32]. However, such an expansion only
provides the correct result in the absence of noise. Here, we considerably expand the validity
of dimensionality estimation using a method that is in no way limited to our system and solely
relies on injecting input information and recording responses of individual nodes separately.

First, a random sequence of input binary headers of Nyis is generated. This sequence is
T = 1000 images long, each image representing a single time step. Each mirror (weight) on
DMD,, is set to its "ON" state individually, and the corresponding node’s response to the input
information is recorded. We then define the state-collect matrix, M as a matrix whose columns
are the individual node responses N(t). Considering the n = 350 nodes we defined for our PNN,
the matrix M will therefore be T X n in size:

Nl(l) T Nn=350(1)
M= : : : @)
Ni(T = 1000) --- Ny350(T = 1000)

Computing the dimensionality of M would allow us to gauge the dimensionality expansion
of the input data performed by our LA-VCSEL. This expansion, which results in the mapping
of input data to higher dimension space forms the basis of ANNSs, and explains why they can
produce non-trivial decision boundaries which solve complex computational tasks. Nonlinearity
is needed for such dimensionality expansions, which explains why neurons present nonlinear
activation functions in ANNs. Indeed, tasks which are not solvable in the low dimensional
input space can benefit from a nonlinear mapping onto a higher dimensional space [18,33].
Therefore, measuring the dimensionality of the LA-VCSEL’s nonlinear transformation is crucial
to understanding its computational power. In a noiseless scenario, such a task would be simple
and indeed, one would just need to calculate the rank of M, which would give us the number of
linearly independent node responses, and therefore, the dimensionality of the state space. Yet,
noise will add a random modulation on top of each individual node response, such that even
two perfectly linearly dependant nodes will become partially linearly independent after noise
is added. Sources of noise in our system include the injection laser, the LA-VCSEL and the
photodetector, and it is a general feature of analog neural networks [23,31]. Although in this
case, noise increased the dimensionality, it cannot be leveraged for computation because its
contributions are random and not consistent. As a consequence, to carry out a dimensionality
analysis for noisy data, one has to rely on methods which deal with correlations rather than pure
linear dependencies. Principal component analysis (PCA) [34-36] is such a method.

PCA applies a dimensionality analysis by giving orthogonal principal components along
which the variance in the data is distributed and assigns a weight to these principal components.
If columns of M are predominantly linearly dependant, they will get mapped onto a small
number of principal components, which in turn will account for nearly all of the variance in
the data. However, because noise adds variance in the data, some principal components will be
noise-dominated therefore artificially adding dimensionality to our dataset. The crucial challenge
facing us here, is to identify the right number of principal components that explain real variance
in the data, while excluding those that predominantly explain noise. We would thus like a
systematic way of excluding the principal components that are noise dominated, and carrying out
this analysis will give us an estimate for the rank of M.
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In order to do so, we first compute X, the covariance matrix of M:

cov (N1(0), N1(z))  --- cov (N1(1), Nu(1))
Y =cov(M) = . (3
cov (Nu(2), N1(2))  +-+ cov (Ny(t), Nu(1))

We then carry out a singular value decomposition (SVD) of X. The SVD algorithm finds the
matrices U, S,V that satisfy:
r=USV’, 4)

where S is a diagonal matrix whose entries Ag,k € {1,...,n = 350}, are the eigenvalues of X
and its eigenvectors (principal components) are the columns of U. The eigenvalues represent the
amount of variance explained by each principal component. Since X is symmetric and real valued,
U =V, and U is real valued. U, S,V are all square matrices of size nxn because X is square.
As stated previously, we would like a systematic way of identifying noise dominated principal
components. In [37], such a criterion is presented. This is possible under the assumption that
said noise is Gaussian in origin and distributed with a constant standard deviation for all elements
(neurons) and at all times. The author gives a statistical indicator 7, named the factor indicator
function, which is a function of the eigenvalues Ag:

no AT —-k)?
I(k):( i=k+1 (nt/_k(;; ))

®

I(k) is related to the difference between the noisy experimental data and the noiseless data. A
more in depth explanation is given in [37] and in [38], where this method was applied to remove
noise and reduce the dimensionality of an atmospheric emitted radiance dataset. Locating the
minimum of /(k) at kn;, yields then the number of principal components representing meaningful
variance in the data, while minimizing the influence of noise, giving us therefore an estimate of
M’s rank.

A detailed comparison between our approach and the concept of orthogonal function expansion
introduced in [32] should be carried out. For that, the approach in [32] first needs to be extended
to incorporate the effects of noisy data. Generally speaking, the noisy PCA approach is agnostic
and does not rely on a particular choice of an orthogonal function family. As such, it heuristically
appears more general. However, the approach in [32] could allow determining a more meaningful
dimensionality in cases where a set of orthogonal functions can be linked to features of a particular
task.

Figure 5 shows the results of this PCA method on our dataset containing the node responses
for a different number of input dimension N-bits. In Fig. 5(a), the dimensionality is measured
and compared with the VCSEL switched ON and OFF. The notable difference between the two
configurations clearly shows that our device significantly increases the dimensionality of the
input data. This increase in dimensionality is in general, but not always, helpful for computation.
Indeed, when switching the VCSEL off, we found that our system was not able to learn any
task. Figure 5(b) shows how the bias current impacts the dimensionality of our system at a
constant injection power ratio PR = 0.8, and results are generally in-line with Fig. 3. There is a
clear correlation between the increase in dimensionality and better performance for higher bias
currents. Moreover, Fig. 3(c) shows that the response of the system is overall more nonlinear.
This stronger non linearity is consistent with an increased dimensionality at higher bias currents.

Finally, one should keep in mind that several assumptions and approximations were made to
obtain these dimensionality numbers. As such, they should not be interpreted as absolute values,
but rather in comparison with each other. Common to all data in Fig. 5 is that the dimensionality
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Fig. 5. Dimensionality measurements for different input bit-numbers and PR~ 0.8. (a)
Dimensionality of the system with the VCSEL ON and OFF. The VCSEL expands the
dimensionality of the input highlighting the non-linearity of the device. (b) Dimensionality
for different bias currents, the dimensionality increases with /y;,¢ highlighting the stronger
non linear nature of the system at higher bias currents.

saturates and in some cases even drops when the number of input dimensions exceeds 10 bits.
We associate this trend to the reduced optical intensity that is injected into the device per bit, and
the resulting smaller modifications created by different bit configurations because increasingly
smaller regions of the input area on DMD, are used to encode each bit. It is therefore possible,
that increasing the injection power ratio PR for higher N — bits could counteract this potential
degradation in consistency and dimensionality.

We see that under the best conditions, Iyj,s = 1.5y, we reach a dimensionality of 50, whereas
we implement 350 weights. We can compare this number to the number of modes supported by
the VCSEL, which can be estimated by taking the ratio between the areas of a typical central
speckle and the area of the VCSEL. We find that the VCSEL supports at least 80 modes. This
sets the upper bound on the number of linearly independent nodes that we can implement
experimentally. We can then compare the size of these speckles ~ 5.6 ym to the size of one
mirror on DMDy, and taking into account the magnification we get a sampling factor of ~ 1.6,
every speckle is therefore imaged onto 1.6 mirrors. We then find that 50 = 80/1.6 making our
estimation of the dimensionality via PCA roughly inline with the physics of the device.

Lastly, our measurement is blind to phase and polarization dynamics. Indeed, we do not
use phase or polarization to encode information, nor do we consider it when training or
measuring dimensionality hence, we systematically underestimate the dimensionality of our
device. Capturing its full complexity would require more elaborate encoding and detection
schemes.

3.3. Conclusion

We studied the impact of certain physical parameters, namely, injection wavelength, injection
power, and bias current on performance in a spatially multiplexed LA-VCSEL-based photonic
neural network for the first time. We showed that for our classification task, the best performance
is achieved when injection locking conditions are met in terms of injection wavelength and
power. Moreover, we investigated the impact of the bias current on performance, and showed
that a higher bias current resulted in better performance as well as a stronger system nonlinearity.
Although our study was limited to a single benchmark task, i.e. 3-bit header recognition, the
general conclusions drawn in this work should still be applicable to other classification tasks,
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especially when considering the impact of injection wavelength and power. Indeed, our work
is inline with previous studies conducted on VCSEL and edge-emitting laser based PNNs.
Moreover, in the case of hardware NN fine-tuning of physical parameters is needed and this work
provides a useful analysis and phenomenological explanations for the adequate range of physical
parameters that were measured. We then studied the impact of these physical parameters on useful
computational metrics for neuromorphic hardware, namely: consistency and dimensionality.
We measured a high total system consistency (above 99%), and studied how this consistency
changed with different physical parameters. Lastly, we presented a general method for gauging the
dimensionality of a hardware system based on principal component analysis under the influence
of noise. We were able to establish some correlations between higher dimensionality and better
performance under certain conditions. This confirms the consistency of our dimensionality
estimation with previous measurements. Our work is of high relevance as it sets the stage for
the use of LA-VCSELSs as the building blocks of future, more complex PNN structures such as
VCSEL arrays [39,40]. Finally, we presented a simple, efficient and general method of estimating
dimensionality that could be applied to many systems.
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